¡Contacta con nosotros!
Telefono Euroinnova ¡Te llamamos!
Deja tu mensaje

Tienes una Beca 20% exclusiva para ti. Actívala usando el código AGOSTO20 hasta el 29/08/2023

Impulsa tu carrera como profesional gracias a nuestro Master en Big Data y Business Intelligence Data Science y consigue tu titulación expedida por el Instituto Europeo de Estudios Empresariales (INESEM)

Titulación
Modalidad
Online
Duración - Créditos
1500 horas
Becas y Financiación
sin intereses
Equipo Docente
Especializado
Acompañamiento
Personalizado

Opiniones de nuestros alumnos

Media de opiniones en los Cursos y Master online de Euroinnova

Nuestros alumnos opinan sobre:

4,6
Valoración del curso
100%
Lo recomiendan
4,9
Valoración del claustro

Felipe T.

TOLEDO

Opinión sobre Master en Big Data y Business Intelligence. Data Science

Calidad, contenido y profesores me parece un máster espectacular.

Hugo T.

ALBACETE

Opinión sobre Master en Big Data y Business Intelligence. Data Science

El Master en Big Data y Business Intelligence Data Science me ha abierto muchas puertas de cara al mercado laboral ¡Recomendable!

Juan Antonio P.

MURCIA

Opinión sobre Master en Big Data y Business Intelligence. Data Science

Facilidad en cuanto al pago y la plataforma de Euroinnova ha sido muy satisfactorio el poder realizar este Máster y aprender más sobre Big Data y Business Intelligence Data Science.

Elisa G.

TARRAGONA

Opinión sobre Master en Big Data y Business Intelligence. Data Science

En este Master en Big Data y Business Intelligence Data Science he podido aprender muchos conceptos sobre analítica web y además darme cuenta de la importancia que tiene esto para el mundo empresarial. Lo recomiendo.

Javier B.

MADRID

Opinión sobre Master en Big Data y Business Intelligence. Data Science

En este Máster de Big Data, entre muchas otras cosas, he aprendido a utilizar en profundidad este tipo de servicios y su utilidad e importancia. Además, me ha parecido muy completo y organizado, lo recomiendo
* Todas las opiniones sobre , aquí recopiladas, han sido rellenadas de forma voluntaria por nuestros alumnos, a través de un formulario que se adjunta a todos ellos, junto a los materiales, o al finalizar su curso en nuestro campus Online, en el que se les invita a dejarnos sus impresiones acerca de la formación cursada.
Alumnos

Plan de estudios de Master en big data y business intelligence data science

 MASTER EN BIG DATA Y BUSINESS INTELLIGENCE DATA SCIENCEAprovecha la oportunidad que te ofrece Euroinnova para desarrollar las habilidades y competencias profesionales necesarias para cumplir tus objetivos en el ámbito laboral, y además al mejor precio. ¡No esperes más y solicita información sin compromiso!

Resumen salidas profesionales
de Master en big data y business intelligence data science
La creciente cantidad de datos y el desarrollo del Internet de las Cosas (IoT), hacen cada vez más presentes los conceptos de Big Data y Business Intelligence en los entornos empresariales, donde el científico de datos tiene un papel fundamental. Gracias a este Master en Big Data y Business Intelligence. Data Science podrás ponerte a la vanguardia en el uso de nuevas tecnologías y métodos de análisis de datos que te permitan desarrollar las habilidades analíticas necesarias para extraer y evaluar los datos de una manera eficaz logrando una toma de decisiones estratégicas y optimización de costes. Contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión.
Objetivos
de Master en big data y business intelligence data science
- Entender la importancia del uso del Big Data y el Business Intelligence para la toma de decisiones estratégicas. - Aprender a utilizar herramientas de Big Data como Weka, Talen Open Studio o el ecosistema Hadoop. - Utilizar bases de datos NoSQL con MongoDB y SQL con MySQL y aprender los lenguajes Python y R para Data Science. - Saber utilizar y aplicar correctamente las principales técnicas de Data Mining y Storytelling. - Crear visualizaciones de datos profesionales con herramientas como Power BI, Tableau o Qlikview. - Utilizar las principales técnicas y métricas en Analítica web gracias a Google Analytics 4 o Google Tag Manager. - Explotar las tecnologías de Inteligencia artificial, Machine Learning y Deep Learning así como la visión artificial.
Salidas profesionales
de Master en big data y business intelligence data science
El análisis de datos y el Big Data se han convertido en áreas profesionales con gran demanda actualmente. Gracias a este Master en Big Data y Business Intelligence. Data Science optarás a puestos tan solicitados como Analista de datos, Data Scientist, Business Analyst, Arquitecto de soluciones Big Data, IA Developer, Machine Learning Engineer o E-commerce & Social Media.
Para qué te prepara
el Master en big data y business intelligence data science
Con el Máster en Business Intelligence y Big Data. Data Science usarás herramientas Big Data como Weka, Talend o Hadoop. Utilizarás MongoDB y MySQL para gestionar bases de datos, Python y R para el análisis de datos y Power BI o Tableau para la visualizacion de información. Conocerás y aplicarás algoritmos de Inteligencia artificial, Machine learning y visión artificial. Por último, usarás Google Analytics para el análisis web.
A quién va dirigido
el Master en big data y business intelligence data science
El Máster en Business Intelligence y Big Data. Data Science está dirigido a técnicos informáticos, analistas de datos, estadísticos o, en general, a profesionales de cualquier sector que quieran aprender las tecnologías, algoritmos y herramientas más avanzadas para analizar y explotar datos. También es idónea para estudiantes que estén interesados en estas temáticas.
Metodología
de Master en big data y business intelligence data science
Metodología Curso Euroinnova
Carácter oficial
de la formación
La presente formación no está incluida dentro del ámbito de la formación oficial reglada (Educación Infantil, Educación Primaria, Educación Secundaria, Formación Profesional Oficial FP, Bachillerato, Grado Universitario, Master Oficial Universitario y Doctorado). Se trata por tanto de una formación complementaria y/o de especialización, dirigida a la adquisición de determinadas competencias, habilidades o aptitudes de índole profesional, pudiendo ser baremable como mérito en bolsas de trabajo y/o concursos oposición, siempre dentro del apartado de Formación Complementaria y/o Formación Continua siendo siempre imprescindible la revisión de los requisitos específicos de baremación de las bolsa de trabajo público en concreto a la que deseemos presentarnos.

Temario de Master en big data y business intelligence data science

Descargar GRATIS
el temario en PDF
Estoy de acuerdo con la Política de privacidad y Condiciones de Matriculación. Información básica sobre Protección de Datos aquí.
  1. ¿Qué es Big Data?
  2. ¿Y Thick Data? ¿Cuál es el matiz para diferenciar ambos términos?
  3. El gran auge del big data
  4. La importancia de almacenar y extraer información
  5. ¿Cual es el papel de las fuentes de datos?
  6. Soluciones novedosas gracias a la selección de datos
  7. Naturaleza de las fuentes de datos Big Data
  1. Thick Data, el valor de lo cualitativo. Entender emociones humanas, intenciones y sentimientos
  2. Fases en un proyecto de Big Data
  3. Big Data enfocado a los negocios
  4. Apoyo del Big Data en el proceso de toma de decisiones
  5. Toma de decisiones operativas
  1. Marketing estratégico y Big Data
  2. Open data
  3. Ejemplo de uso de Open Data
  4. IoT (Internet of Things-Internet de las cosas)
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Big Data en salud
  5. Necesidad de Big Data en la asistencia sanitaria
  6. Retos del big data en salud
  7. Big Data y People Analytics en RRHH
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de Textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General: ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es BPM?
  2. Efecto silo
  3. Ventajas flujo de trabajo
  4. ¿Qué es talend?
  1. Introducción Talend
  2. ¿Qué es el proceso ETL?
  3. Instalación Talend
  1. Usando Talend Studio
  2. Leer un archivo
  3. Ordenar un archivo
  1. Crear y usar mMetadata
  2. Filtrar datos usando el componente tMap
  3. Unir dos fuentes de datos con el componente tMap
  1. Configurando uniones en tMap
  2. Añadir filtros basados en condiciones en tMap
  1. Usar variables de contexto
  2. Crear metadatos de conexión de cluster
  3. Crear metadatos de conexión de cluster desde archivos de configuración
  1. Escribiendo y leyendo datos en HDFS
  2. Iniciando un trabajo en Spark
  3. Iniciando un trabajo en YARN
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a PENTAHO
  2. Soluciones que ofrece PENTAHO
  3. MongoDB & PENTAHO
  4. Hadoop & PENTAHO
  5. Weka & PENTAHO
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos
  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau
  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3
  1. Visualización de datos
  2. Tipologías de gráficos
  3. Fuentes de datos
  4. Creación de informes
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. Introducción a Power BI
  2. Instalación de Power BI
  3. Modelado de datos
  4. Visualización de datos
  5. Dashboards
  6. Uso compartido de datos
  1. CartoDB
  2. ¿Qué es CARTO?
  3. Carga y uso de datos. Tipos de análisis
  4. Programación de un visor con la librería CARTO.js
  5. Uso de ejemplos y ayudas de la documentación de la API
  1. Cambiar títulos de eje
  2. Aumentar el espacio entre ejes y títulos de ejes
  3. Cambiar la estética de los títulos de Axis
  4. Cambiar la estética del texto del eje
  5. Texto del eje de rotación
  6. Eliminar texto de eje y marcas
  7. Eliminar títulos de eje
  8. Límite del rango del eje
  9. Forzar el trazado para que comience en el origen
  10. Ejes con la misma escala
  11. Usar una función para modificar etiquetas
  1. Añade un título
  2. Ajustar la posición de los títulos
  3. Use una fuente no tradicional en su título
  4. Cambiar espaciado en texto de varias líneas
  1. Trabajando con leyendas
  2. Apaga la leyenda
  3. Eliminar títulos de leyenda
  4. Cambiar la posición de la leyenda
  5. Cambiar la dirección de la leyenda
  6. Cambiar el estilo del título de la leyenda
  7. Cambiar título de leyenda
  8. Cambiar el orden de las claves de leyenda
  9. Cambiar etiquetas de leyenda
  10. Cambiar cuadros de fondo en la leyenda
  11. Cambiar el tamaño de los símbolos de leyenda
  12. Dejar una capa fuera de la leyenda
  13. Adición manual de elementos de leyenda
  14. Usar otros estilos de leyenda
  1. Cambiar el color de fondo del panel
  2. Cambiar líneas de cuadrícula
  3. Cambiar el espaciado de las líneas de cuadrícula
  4. Cambiar el color de fondo de la trama
  1. Trabajar con márgenes
  1. Trabajar con gráficos de paneles múltiples
  2. Crear múltiplos pequeños basados en una variable
  3. Permitir que los ejes deambulen libremente
  4. Uso facet_wrapcon dos variables
  5. Modificar el estilo de los textos de la tira
  6. Crear un panel de diferentes parcelas
  1. Trabajar con colores
  2. Especificar colores individuales
  3. Asignar colores a las variables
  4. Variables Cualitativas
  5. Seleccionar manualmente colores cualitativos
  6. Utilice paletas de colores cualitativas integradas
  7. Use paletas de colores cualitativos de paquetes de extensión
  8. Variables Cuantitativas
  9. La paleta de colores Viridis
  10. Usar paletas de colores cuantitativas de paquetes de extensión
  11. Modificar paletas de colores después
  1. Cambiar el estilo de trazado general
  2. Cambiar la fuente de todos los elementos de texto
  3. Cambiar el tamaño de todos los elementos de texto
  4. Cambiar el tamaño de todos los elementos de línea y rectángulo
  5. Crea tu propio tema
  6. Actualizar el tema actual
  1. Agregar líneas horizontales o verticales a un gráfico
  2. Agregar una línea dentro de un gráfico
  3. Agregar líneas curvas y flechas a un gráfico
  1. Agregue etiquetas
  2. Agregar anotaciones de texto
  3. Use Markdown y HTML Rendering para anotaciones
  1. Voltear una parcela
  2. arreglar un eje
  3. Invertir un eje
  4. Transformar un eje
  5. Circularizar una parcela
  1. Alternativas a un diagrama de caja
  2. Crear una representación de alfombra en un gráfico
  3. Crear una matriz de correlación
  4. Crear un gráfico de contorno
  5. Crear un mapa de calor
  6. Crear un diagrama de cresta
  1. Trabajar con cintas (AUC, CI, etc.)
  1. Predeterminado: agregar un suavizado LOESS o GAM
  1. Trabajar con gráficos interactivos
  1. ¿Qué es la analítica web?
  2. Establecimiento de objetivos y KPIs
  3. Métricas principales y avanzadas
  4. Objetivos y ventajas de medir
  5. Plan de medición
  1. Introducción a Google Analytics 4
  2. Interfaz
  3. Métricas y dimensiones
  4. Informes básicos
  5. Filtros
  6. Segmentos
  7. Eventos
  8. Informes personalizados
  9. Comportamiento de los usuarios e interpretación de datos
  1. Introducción a GTM
  2. Implementación con GTM
  3. Medición con GTM
  4. Uso de Debug/Preview Mode
  1. La atribución
  2. Multicanalidad
  3. Customer Journey
  4. Principales modelos de atribución
  5. Modelos de atribución personalizados
  1. Planificación del Dashboard
  2. Características del Dashboard
  3. Introducción a Data Studio
  4. Conectores
  5. Tipos de gráficos
  6. Personalización de informes
  7. Elementos de control
  8. Dimensiones y métricas
  9. Campos Calculados
  10. Compartir informes
  1. Introducción al SEO
  2. Historia de los motores de búsqueda
  3. Componentes de un motor de búsqueda
  4. Organización de resultados en un motor de búsqueda
  5. La importancia del contenido
  6. El concepto de autoridad en Internet
  7. Campaña SEO
  1. Introducción al SEM
  2. Principales conceptos en SEM
  3. Sistema de pujas y Calidad del anuncio
  4. Primer contacto con Google Ads
  5. Creación de anuncios con calidad
  6. Indicadores clave de rendimiento en SEM
  1. Análisis del tráfico en redes sociales
  2. Fijar objetivos en redes sociales
  3. Facebook
  4. Twitter
  5. Youtube
  6. LinkedIn
  7. Tik tok
  8. Instagram
  1. Usabilidad
  2. Mapas de calor
  3. Grabaciones de sesiones de usuario
  4. Ordenación de tarjetas
  5. Test A/B
  6. Test multivariante
  7. KPI, indicadores clave de rendimiento
  8. Cambios a realizar para optimizar una página web
  1. Hotjar
  2. Microsoft Power BI
  3. Google Search Console
  4. Matomo
  5. Awstats
  6. Chartbeat
  7. Adobe Analytics
  1. ¿Qué son las cookies?
  2. Tipos de cookies
  3. GDPR
  4. Herramientas para manejar el consentimiento de cookies
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. La visión artificial: definiciones y aspectos principales
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

Titulación de Master en big data y business intelligence data science

Título Propio del Instituto Europeo de Estudios Empresariales (INESEM) “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”

INESEM
Curso Online Homologado Cualifica

INES - INESEM - Privados

Cursos relacionados

Curso Superior en Estadistica Aplicada. Analisis de Datos y SPSS
Curso Superior en Estadistica Aplicada. Analisis de Datos y SPSS
4,8
460€
Master Data Science: Big Data en Marketing Digital + Titulación Universitaria
Master Data Science: Big Data en Marketing Digital + Titulación Universitaria
4,8
1495€
Especialista en Data Mining
Especialista en Data Mining
4,8
260€
Especialista en Tratamiento de Datos con R, Statistica y SPSS
Especialista en Tratamiento de Datos con R, Statistica y SPSS
4,8
260€
Euroinnova Formación
Juan Ríos Jiménez
Tutor
Técnico informático en desarrollo de aplicaciones multiplataforma (DAM) con especialización en ciberseguridad. Cuenta con experiencia laboral como programador Full Stack. Apasionado de la rama Ciberseguridad enfocado en seguridad ofensiva. Además, le encanta estar actualizado tecnológicamente y siempre está comprometido por mejorar sus conocimientos.
Su formación +
Linkedin Euroinnova

7 razones para realizar el Master en big data y business intelligence data science

1
Nuestra experiencia

Más de 20 años de experiencia en la formación online.

Más de 300.000 alumnos ya se han formado en nuestras aulas virtuales.

Alumnos de los 5 continentes.

25% de alumnado internacional.

Las cifras nos avalan
Logo google
4,7
2.625 Opiniones
Logo youtube
8.582
suscriptores
Logo facebook
4,4
12.842 Opiniones
Logo youtube
5.856
Seguidores
2
Nuestra Metodología

Flexibilidad

Aprendizaje 100% online, flexible, desde donde quieras y como quieras

Docentes

Equipo docente especializado. Docentes en activo, digitalmente nativos

Acompañamiento

No estarás solo/a. Acompañamiento por parte del equipo de tutorización durante toda tu experiencia como estudiante.

Aprendizaje real

Aprendizaje para la vida real, contenidos prácticos, adaptados al mercado laboral y entornos de aprendizaje ágiles en campus virtual con tecnología punta

Seminarios

Seminarios en directo. Clases magistrales exclusivas para los estudiantes

3
Calidad AENOR

Se llevan a cabo auditorías externas anuales que garantizan la máxima calidad AENOR.

Nuestros procesos de enseñanza están certificados por AENOR por la ISO 9001, 14001 y 27001.

Certificación de calidad
4
Confianza

Contamos con el sello de Confianza Online y colaboramos con las Universidades más prestigiosas, Administraciones Públicas y Empresas Software a nivel Nacional e Internacional.

Confianza logo Proteccion logo
5
Empleo y prácticas

Disponemos de Bolsa de Empleo propia con diferentes ofertas de trabajo, y facilitamos la realización de prácticas de empresa a nuestro alumnado.

6
Nuestro Equipo

En la actualidad, Euroinnova cuenta con un equipo humano formado por más de 300 profesionales. Nuestro personal se encuentra sólidamente enmarcado en una estructura que facilita la mayor calidad en la atención al alumnado.

7
Somos distribuidores de formación

Como parte de su infraestructura y como muestra de su constante expansión, Euroinnova incluye dentro de su organización una editorial y una imprenta digital industrial.

Paga como quieras

Financiación 100% sin intereses

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Euroinnova.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

25%
Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método EUROINNOVA, ofrecemos una beca del 25% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20%
Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15%
Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15%
Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 900 831 200 o vía email en formacion@euroinnova.es

* Becas no acumulables entre sí

* Becas aplicables a acciones formativas publicadas en euroinnova.es

Materiales entregados con el Master en big data y business intelligence data science

Información complementaria

Preguntas al director académico sobre el Master en big data y business intelligence data science

Artículos relacionados

Cursos Youtube Online Euroinnova Cursos Youtube Online Euroinnova
1795
1795
Cómodos plazos sin intereses + Envío gratis
InnovaPAY
Simulador de cuotas, selecciona número de cuotas:
180 / mes
¿Tienes dudas?
Llámanos gratis al 900 831 200
trustmark
star-graystar-graystar-graystar-graystar-gray
star-yellowstar-yellowstar-yellowstar-yellowstar-yellow

4,61

Excelente

ellipsis

Protección al Comprador

Cookies

Este sitio web utiliza cookies propias y de terceros para mejorar los servicios relacionados con tus preferencias, mediante el análisis de tus hábitos de navegación. En caso de que rechace las cookies, no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web.

Puede obtener más información y cambiar su configuración en nuestra Política de Cookies.

Configurar

Tardarás 3 minutos

El responsable del tratamiento es Euroinnova International Online Education