Becas Fundación Euroinnova: Avanza en Formación, crece en oportunidades. SOLICITA BECA AVANZA

¡Aplicar ahora!

Matricúlate cuanto antes en este Master Inteligencia Artificial Y Deep Learning y consigue una Titulación con 60 Créditos ECTS expedida por la Universidad Católica de Murcia (UCAM)

Titulación
Modalidad
Modalidad
Online
Duración - Créditos
Duración - Créditos
12 meses - 60 ECTS
Baremable Oposiciones
Baremable Oposiciones
Administración pública
Becas y Financiación
Becas y Financiación
sin intereses
Plataforma Web
Plataforma Web
24 Horas
Centro Líder
Centro Líder
formación online

Opiniones de nuestros alumnos

Media de opiniones en los Cursos y Master online de Euroinnova

Nuestros alumnos opinan sobre: Master en Inteligencia Artificial y Deep Learning + 60 Créditos ECTS

4,6
Valoración del curso
100%
Lo recomiendan
4,9
Valoración del claustro

Eloisa Dueñas

SEVILLA

Opinión sobre Master en Inteligencia Artificial y Deep Learning + 60 Créditos ECTS

Comentarios

* Todas las opiniones sobre Master en Inteligencia Artificial y Deep Learning + 60 Créditos ECTS, aquí recopiladas, han sido rellenadas de forma voluntaria por nuestros alumnos, a través de un formulario que se adjunta a todos ellos, junto a los materiales, o al finalizar su curso en nuestro campus Online, en el que se les invita a dejarnos sus impresiones acerca de la formación cursada.
Alumnos

Plan de estudios de Master inteligencia artificial y deep learning

MASTER INTELIGENCIA ARTIFICIAL Y DEEP LEARNING. No dejes pasar la oportunidad de realizar este Master sobre Inteligencia Artificial y Deep Learning que te ofrece Euroinnova International Online Education. Comienza a destacar profesionalmente y fórmate de la manera más cómoda estudiando 100% online desde donde tú quieras y a tu ritmo. ¡Te esperamos!

Resumen salidas profesionales
de Master inteligencia artificial y deep learning
El Máster en Inteligencia Artificial y Deep Learning proporciona formación en un ámbito cada vez más demandado por las empresas que apuestan por el desarrollo de software y sistemas inteligentes gracias al Deep Learning, el IOT y la visión artificial, así como la construcción de sistemas artificiales con capacidad de interacción con su entorno y los usuarios. Este Máster en Inteligencia Artificial y Deep Learning busca formar a profesionales en uno de los sectores laborales más demandados en la actualidad, el del comportamiento inteligente y automatizado de cualquier sistema. Si eres un apasionado de las nuevas tecnologías y tienes inquietudes sobre todo lo que nos depara el futuro tecnológico, este es tu máster. Podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista asesorado por un equipo docente especialista en el sector.
Objetivos
de Master inteligencia artificial y deep learning
- Manejar, programar y parametrizar herramientas avanzadas de machine learning para la creación de software inteligente. - Construir sistemas inteligentes capaces de dar respuesta a la demanda actual. - Conocer el desarrollo de chatbots. - Desarrollar un sistema Deep Learning. - Descubrir la visión artificial, el iot y su aplicación para la industria 4.0.
Salidas profesionales
de Master inteligencia artificial y deep learning
Mediante la realización de este Máster en Inteligencia Artificial y Deep Learning podrás trabajar como Director de proyectos en inteligencia artificial, Ingeniero Software y Programador de Inteligencia Artificial en proyectos de Deep learning, entre otros muchos campos.
Para qué te prepara
el Master inteligencia artificial y deep learning
El Máster en Inteligencia Artificial y Deep Learning busca la formación en un ámbito cada vez más demandado por multitud de empresas que apuestan por el desarrollo de software y sistemas inteligentes gracias a la aplicación de la Inteligencia Artificial, el Machine Learning, el IOT y el Deep Learning. Promoviendo una revolución en la empresa con la Industria 4.0.
A quién va dirigido
el Master inteligencia artificial y deep learning
Este Máster en Inteligencia Artificial y Deep Learning busca formar a profesionales en uno de los sectores laborales más demandados en la actualidad, el del comportamiento inteligente y automatizado de cualquier sistema. Si eres un apasionado de las nuevas tecnologías y tienes inquietudes sobre todo lo que nos depara el futuro tecnológico, este es tu máster.
Metodología
de Master inteligencia artificial y deep learning
Entre el material entregado en este curso se adjunta un documento llamado Guía del Alumno dónde aparece un horario de tutorías telefónicas y una dirección de e-mail dónde podrá enviar sus consultas, dudas y ejercicios. La metodología a seguir es ir avanzando a lo largo del itinerario de aprendizaje online, que cuenta con una serie de temas y ejercicios. Para su evaluación, el alumno/a deberá completar todos los ejercicios propuestos en el curso. La titulación será remitida al alumno/a por correo una vez se haya comprobado que ha completado el itinerario de aprendizaje satisfactoriamente.
Carácter oficial
de la formación
La presente formación no está incluida dentro del ámbito de la formación oficial reglada (Educación Infantil, Educación Primaria, Educación Secundaria, Formación Profesional Oficial FP, Bachillerato, Grado Universitario, Master Oficial Universitario y Doctorado). Se trata por tanto de una formación complementaria y/o de especialización, dirigida a la adquisición de determinadas competencias, habilidades o aptitudes de índole profesional, pudiendo ser baremable como mérito en bolsas de trabajo y/o concursos oposición, siempre dentro del apartado de Formación Complementaria y/o Formación Continua siendo siempre imprescindible la revisión de los requisitos específicos de baremación de las bolsa de trabajo público en concreto a la que deseemos presentarnos.

Temario de Master inteligencia artificial y deep learning

Descargar GRATIS
el temario en PDF
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. PLN en Python con la librería NLTK
  5. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Introducción a la Inteligencia artificial
  2. El Test de Turing
  3. Agentes Inteligentes
  4. Aplicaciones de la inteligencia artificial
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. La visión artificial: definiciones y aspectos principales
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. Contexto Sistemas Ciberfísicos (CPS)
  2. Características CPS
  3. Componentes CPS
  4. Ejemplos de uso
  5. Retos y líneas de trabajo futuras

Titulación de Master inteligencia artificial y deep learning

Titulación Universitaria de Master en Formación Permanente en Inteligencia Artificial y Deep Learning con 1500 horas y 60 créditos ECTS por la Universidad Católica de Murcia
master inteligencia artificial y deep learningmaster inteligencia artificial y deep learning
OPAM - Universidad Católica de Murcia

Cursos relacionados

Curso Superior en Estadística Aplicada. Análisis de Datos y SPSS
Curso Superior en Estadística Aplicada. Análisis de Datos y SPSS
4,8
460€
Curso de Navision
Curso de Navision
4,8
260€
Especialista en Microsoft Navision
Especialista en Microsoft Navision
4,8
360€
Curso en Data Science y Análisis de Datos
Curso en Data Science y Análisis de Datos
4,8
360€
Euroinnova Business School
Isaías Aranda Cano Aranda Cano
Tutor
Grado Superior en Administración de Sistemas Informáticos.
Su formación +
Linkedin Euroinnova
Euroinnova Business School
Rafael Marín Sastre
Tutor
Titulado Universitario 1 ciclo o Diplomado en Ingeniería Técnica en Informática de Sistemas Administrador de Servidores y páginas web Curso Superior en Ciberseguridad Curso de Business Intelligence y Big Data Formación de formadores E-learning
Su formación +
Linkedin Euroinnova
Euroinnova Business School
Daniel Cabrera Armenteros
Tutor
Licenciado en Ciencias Físicas y con Máster en Implantación, Gestión y Auditoría de Sistemas de Seguridad de Información ISO 27001-27002.
Su formación +
Linkedin Euroinnova

7 razones para realizar el Master inteligencia artificial y deep learning

1
Nuestra experiencia

Más de 20 años de experiencia en la formación online.

Más de 300.000 alumnos ya se han formado en nuestras aulas virtuales.

Alumnos de los 5 continentes.

25% de alumnado internacional.

Las cifras nos avalan
Logo google
4,7
2.625 Opiniones
Logo youtube
8.582
suscriptores
Logo facebook
4,4
12.842 Opiniones
Logo youtube
5.856
Seguidores
2
Nuestra Metodología

Flexibilidad

Aprendizaje 100% online, flexible, desde donde quieras y como quieras

Docentes

Equipo docente especializado. Docentes en activo, digitalmente nativos

Acompañamiento

No estarás solo/a. Acompañamiento por parte del equipo de tutorización durante toda tu experiencia como estudiante.

Aprendizaje real

Aprendizaje para la vida real, contenidos prácticos, adaptados al mercado laboral y entornos de aprendizaje ágiles en campus virtual con tecnología punta

Seminarios

Seminarios en directo. Clases magistrales exclusivas para los estudiantes

3
Calidad AENOR

Se llevan a cabo auditorías externas anuales que garantizan la máxima calidad AENOR.

Nuestros procesos de enseñanza están certificados por AENOR por la ISO 9001 y 14001.

Certificación de calidad
4
Confianza

Contamos con el sello de Confianza Online y colaboramos con las Universidades más prestigiosas, Administraciones Públicas y Empresas Software a nivel Nacional e Internacional.

Confianza logo Proteccion logo
5
Empleo y prácticas

Disponemos de Bolsa de Empleo propia con diferentes ofertas de trabajo, y facilitamos la realización de prácticas de empresa a nuestro alumnado.

6
Nuestro Equipo

En la actualidad, Euroinnova cuenta con un equipo humano formado por más de 300 profesionales. Nuestro personal se encuentra sólidamente enmarcado en una estructura que facilita la mayor calidad en la atención al alumnado.

7
Somos distribuidores de formación

Como parte de su infraestructura y como muestra de su constante expansión, Euroinnova incluye dentro de su organización una editorial y una imprenta digital industrial.

Paga como quieras

Financiación 100% sin intereses

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Euroinnova.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

25%
Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método EUROINNOVA, ofrecemos una beca del 25% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20%
Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15%
Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15%
Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 900 831 200 o vía email en formacion@euroinnova.es

* Becas no acumulables entre sí

* Becas aplicables a acciones formativas publicadas en euroinnova.es

Materiales entregados con el Master inteligencia artificial y deep learning

Información complementaria

Master Inteligencia Artificial Y Deep Learning

¿Te gustaría especializarte en el ámbito la Inteligencia Artificial, el Internet de las cosas (IoT) y el Deep Learning? ¿Quieres ser capaz de manejar y programar herramientas para poder crear software inteligentes? ¿Te interesaría aprender a construir sistemas inteligentes? Si la respuesta es afirmativa, Euroinnova te ofrece este Master Inteligencia Artificial Y Deep Learning para que puedas conseguir todo lo que te propongas. ¡No te lo pienses más!

¿Aún no lo tienes claro? Te invitamos a seguir leyendo.

Master Inteligencia Artificial Y Deep Learning

Si tienes alguna duda sobre este tema, contacta con nosotros a través de nuestra página web o, si lo prefieres, llámanos e infórmate.

¿Qué conceptos vas a aprender tras la realización de este Master?

La inteligencia artificial, también conocida como IA en la versión española de las siglas y como AI en la inglesa, consiste en la combinación de algoritmos con la finalidad de crear máquinas y robots que posean las mismas capacidades de los humanos. Esta tecnología ha ido ganando presencia en nuestro día a día, aunque todavía muchos consideran que se encuentra lejos de la realidad actual. Estos sistemas son capaces de aprender desde un simple patrón numérico hasta comportamientos más complejos como pueden ser la capacidad de analizar el entorno en base acciones previamente “enseñadas”.

Por otro lado, el machine learning consiste en el desarrollo de modelos estadísticos con la finalidad de que los sistemas puedan realizar las tareas sin la necesidad de que previamente se le indiquen unas instrucciones, sino que sean capaces de identificar patrones de comportamiento basándose en grandes cantidades de datos históricos que sí han de ser introducidos previamente. Este conocimiento adquirido genera nuevas oportunidades y fuentes de ingresos para las empresas, impulsando la toma de decisiones.

El deep learning se encuentra estrechamente relacionado con el machine learning. Este aprendizaje profundo intenta simular las redes neuronales humanas y que sean capaces de imitar el comportamiento humano, lo que hace que estas puedan “aprender” nuevos conocimientos basándose en una cantidad gigante de datos. Mediante esta nueva tecnología se intenta conseguir que un ordenador sea capaz de aprender conceptos por sí solo hasta llegar al punto de que pueda realizar las tareas de la misma forma que las realizaría un ser humano.

Beneficios del uso del deep learning

Cada vez son más los fondos que se destinan a la investigación y desarrollo de este aprendizaje profundo debido a todas las ventajas y beneficios que proporciona al mundo actual. Esta se trata de una tecnología escalable, por lo que se debe de aprovechar para poder ir mejorando su rendimiento. Algunos de los beneficios derivados del deep learning son:

  • Conseguir automatizar los procesos sin necesidad de que intervenga una figura humana; son capaces de realizar los procesos ellos mismos.
  • Funciona correctamente a partir de datos no estructurados, por lo que se pueden recuperar directamente del contexto comercial.
  • Generan una gran rentabilidad y es capaz de reducir costes gracias a las predicciones que puede realizar, así como identificar posibles fallas en los procesos.
  • Proporciona un análisis avanzado de los resultados, siendo más fiables y concisos.
  • Es fácilmente escalable gracias a la inmensa cantidad de datos que recibe.

¿A qué estás esperando para formarte? ¡Da el paso con Euroinnova International Online Education!

Euroinnova posee una gran oferta de cursos que podrás encontrar en nuestra página web, además de toda la información sobre nuestros servicios. Dentro de la web podrás encontrar opiniones de alumnos que están realizando sus estudios online con nosotros.

Aprovecha los grandes descuentos a la hora de matricularte a nuestras ofertas diarias para obtener tu titulación al mejor precio de la mano de Euroinnova.

Gracias a que el formato es 100% online, podrás organizar tus estudios y trabajo de la mejor forma posible y, sobre todo, desde cualquier lugar. Es una manera muy efectiva de ampliar tu formación y mejorar profesionalmente. ¡Pásate a la metodología e-learning!

Dale un impulso a tus estudios con este Master Inteligencia Artificial Y Deep Learning con 60 Créditos ECTS que te ofrece UCAM junto a Educa Open. ¡No te lo pienses más y apuesta por tu formación!

Matricúlate con nosotros y no dejes pasar la oportunidad de seguir formándote.

¡Te esperamos!

Artículos relacionados

Cursos Youtube Online Euroinnova Cursos Youtube Online Euroinnova
¿Tienes dudas?
Llámanos gratis al 900 831 200